Н. Макарова
НАИМЕНЬШИЕ МАГИЧЕСКИЕ КВАДРАТЫ ИЗ ПРОСТЫХ ЧИСЕЛ
Часть III
Данная страница является продолжением страниц:
http://www.natalimak1.narod.ru/sqmin1.htm
http://www.natalimak1.narod.ru/sqmin2.htm
В предыдущих частях статьи было рассказано о наименьших магических квадратах из простых чисел двух видов: а) магические квадраты составляются из простых чисел в классическом определении (без использования числа 1); б) магические квадраты составляются из простых чисел и числа 1. Первому виду магических квадратов в OEIS соответствует последовательность А164843, второму виду магических квадратов соответствует последовательность А073502. В последовательности А073502 есть интересная подпоследовательность: это магические константы квадратов в точности подобных знаменитому квадрату Дж. Н. Манси. Эти квадраты составлены из числа 1 и следующих последовательных нечётных простых чисел. По-моему, надо выделить данную подпоследовательность в самостоятельную последовательность. Покажу её здесь (рис. 1):
Порядок квадрата |
Массив чисел |
Магическая константа |
Автор квадрата |
12 |
1, 3, …, 827 |
4514 |
Дж. Н. Манси |
15 |
1, 3, …, 1427 |
9635 |
Stefano Tognon |
17 |
1, 3, …, 1879 |
14691 |
Stefano Tognon |
22 |
1, 3, …, 3461 |
34926 |
Stefano Tognon |
35 |
1, 3, …, 9931 |
162759 |
Stefano Tognon |
124 |
1, 3, …, 168523 |
9912840 |
Stefano Tognon |
191 |
1, 3, …, 433981 |
39541261 |
? |
Рис. 1
Стефано прислал мне в письме ссылки на эти квадраты. Вот цитата из его письма:
"Maybe
I had already found the Muncey square you are looking for:
12,15,17,22:
http://digilander.libero.it/ice00/magic/prime/AutomaticConstruction.html
35: http://digilander.libero.it/ice00/magic/prime/Order35.html
124: http://digilander.libero.it/ice00/magic/prime/Order124.html
The latest had need some manual work, but all the others are from”.
Интереснейшие результаты! Особенно впечатляет квадрат 124-го порядка. Квадрат 191-го порядка он пока не построил. Предлагаю читателям построить квадрат 191-го порядка, а также продолжить данную серию квадратов. Думаю, что подобные магические квадраты есть и для n > 191. Но построить их будет непросто.
Примечание: на форуме dxdy.ru определены квадраты порядков больше 191 в данной серии квадратов, вычислены их магические константы, указано последнее число массива для каждого квадрата.
А теперь расскажу о третьем виде наименьших магических квадратов из простых чисел. Эти квадраты составляются из последовательных простых чисел (в классическом определении). Таким квадратам соответствует последовательность А073520 в OEIS. И главным конструктором подобных квадратов является Стефано. Я узнала об этой последовательности на форуме dxdy.ru ещё до знакомства со Стефаном. Участник форума рассказал об этой последовательности, сообщил, что в ней известны только константы квадратов до порядка 6 включительно, и сформулировал задачу построения подобных квадратов, начиная с порядка 7. Я сразу принялась за решение этой задачи и построила подобные квадраты порядков 7 – 15. При этом вспомнила, что о подобном квадрате 9-го порядка раньше сообщали на форуме, и я тогда скопировала ссылку. Сообщила об этом на форуме, участник, рассказавший об этой последовательности, по этой ссылке вышел на сайт Стефана и увидел, что построение подобных квадратов – это тема, которой Стефано давно занимается, и у него есть много результатов. Так я и познакомилась со Стефаном. В настоящее время Стефано продолжает работу над построением магических квадратов данной серии.
Ссылка на последовательность А073520:
http://www.research.att.com/~njas/sequences/A073520
Сначала приведу таблицу результатов по данным OEIS на сегодняшний день (рис. 2).
Порядок квадрата |
Массив чисел |
Магическая константа |
Автор квадрата |
3 |
|
|
? |
4 |
5, …, 61 |
124 |
Stefano Tognon |
5 |
13, …, 113 |
313 |
Stefano Tognon |
6 |
7, …, 167 |
484 |
Stefano Tognon |
7 |
7, …, 239 |
797 |
Stefano Tognon |
8 |
79, …, 439 |
2016 |
Stefano Tognon |
9 |
37, …, 479 |
2211 |
Stefano Tognon |
10 |
23, …, 593 |
2862 |
Stefano Tognon |
11 |
67, …, 797 |
4507 |
Stefano Tognon |
12 |
89, …, 991 |
6188 |
Natalia Makarova |
13 |
13, …, 1033 |
6325 |
Stefano Tognon |
14 |
89, …, 1367 |
9660 |
Natalia Makarova |
15 |
131, …, 1619 |
12669 |
Natalia Makarova |
16 |
31, …, 1699 |
13016 |
Stefano Tognon |
17 |
71, …, 2029 |
16857 |
Stefano Tognon |
18 |
47, …, 2273 |
19530 |
Stefano Tognon |
19 |
43, …, 2551 |
23069 |
Stefano Tognon |
20 |
73, …, 2903 |
28184 |
Stefano Tognon |
21 |
277, …, 3559 |
38761 |
Stefano Tognon |
22 |
353, …, 4013 |
16302 |
Stefano Tognon |
23 |
41, …, 3911 |
42515 |
Stefano Tognon |
24 |
67, …, 4349 |
49846 |
Stefano Tognon |
25 |
127, …, 4903 |
59087 |
Stefano Tognon |
26 |
223, …, 5477 |
70260 |
Stefano Tognon |
27 |
79, …, 5693 |
73385 |
Stefano Tognon |
28 |
13, …, 6047 |
78960 |
Stefano Tognon |
29 |
193, …, 6869 |
97267 |
Stefano Tognon |
Рис. 2
Примечание: для квадрата 3-го порядка не приведены данные, так как числа в этом квадрате очень большие, смотрите эти данные в OEIS.
На сегодня Стефано построил квадраты, кажется, уже до порядка 46 включительно. Скоро новые результаты Стефано должны появиться в OEIS.
Теперь покажу свои авторские квадраты в этой серии квадратов, это квадраты порядков 12, 14 и 15. Эти квадраты я построила по своим программам (ещё до знакомства со Стефаном). Покажу также наборы строк, из которых магические квадраты были получены.
n = 12 массив чисел 89, 97, …, 983, 991 магическая константа 6188.
Это набор из 12 строк, сгенерированный программой:
89 101 347 349 373 479 487 607 787 823 863 883
701 599 661 653 647 751 419 137 97 311 383 829
811 983 839 547 233 967 293 199 163 643 317 193
331 709 761 809 947 691 113 683 421 229 367 127
157 659 499 773 991 227 907 109 719 307 673 167
439 509 359 587 877 919 677 563 251 461 263 283
641 577 853 191 239 521 353 409 859 149 443 953
619 739 179 743 433 971 491 151 401 463 601 397
797 571 881 977 107 277 223 827 617 173 557 181
337 821 131 379 727 269 613 467 541 857 313 733
937 139 103 503 941 523 887 929 457 257 271 241
197 211 281 389 431 449 569 593 631 757 769 911
На рис. 3 вы видите магический квадрат, полученный из данного набора строк.
89 |
101 |
347 |
349 |
373 |
479 |
487 |
607 |
787 |
823 |
863 |
883 |
701 |
599 |
661 |
653 |
647 |
751 |
419 |
137 |
97 |
311 |
383 |
829 |
797 |
571 |
881 |
977 |
107 |
277 |
223 |
827 |
617 |
173 |
557 |
181 |
811 |
983 |
839 |
547 |
233 |
967 |
293 |
199 |
163 |
643 |
317 |
193 |
577 |
239 |
641 |
149 |
191 |
521 |
409 |
859 |
443 |
853 |
353 |
953 |
157 |
659 |
499 |
227 |
773 |
109 |
991 |
907 |
307 |
673 |
167 |
719 |
337 |
379 |
313 |
613 |
467 |
131 |
727 |
269 |
541 |
821 |
857 |
733 |
331 |
709 |
761 |
809 |
947 |
691 |
113 |
683 |
421 |
229 |
367 |
127 |
439 |
509 |
359 |
587 |
877 |
251 |
919 |
677 |
563 |
461 |
283 |
263 |
619 |
739 |
179 |
743 |
433 |
971 |
491 |
151 |
401 |
463 |
397 |
601 |
941 |
503 |
139 |
103 |
929 |
271 |
523 |
241 |
937 |
457 |
887 |
257 |
389 |
197 |
569 |
431 |
211 |
769 |
593 |
631 |
911 |
281 |
757 |
449 |
Рис. 3
n = 14 массив чисел 89, 97, …, 1361, 1367 магическая константа 9660.
Это набор из 14 строк, сгенерированный программой:
89 97 193 227 241 521 563 683 911 1063 1231 1237 1283 1321
277 1091 1181 431 1153 757 739 937 941 433 1019 113 139 449
659 727 557 691 1327 401 983 179 1151 331 761 1117 157 619
1301 439 1249 419 109 1279 1123 569 383 907 653 251 337 641
1223 461 541 1259 149 1163 743 719 359 479 163 647 463 1291
617 977 167 643 127 709 773 509 577 811 997 971 421 1361
229 991 607 389 257 859 1171 1213 547 1033 1319 263 631 151
311 883 601 239 1289 269 307 967 491 829 211 857 1297 1109
1097 809 1061 1129 823 487 523 587 443 733 199 853 599 317
701 283 197 137 827 503 1069 1187 1087 1009 499 1051 877 233
1229 191 181 571 863 367 887 1307 281 1277 1013 379 821 293
947 347 769 397 467 929 1303 1039 1031 673 919 173 353 313
787 103 797 223 1193 593 953 1093 1049 457 1021 881 409 101
107 131 271 349 373 613 661 677 751 839 1103 1201 1217 1367
На рис. 4 показан магический квадрат, полученный из этого набора строк.
89 |
97 |
193 |
227 |
241 |
521 |
563 |
683 |
911 |
1063 |
1231 |
1237 |
1283 |
1321 |
277 |
1091 |
1181 |
431 |
1153 |
757 |
739 |
937 |
941 |
433 |
1019 |
113 |
139 |
449 |
701 |
283 |
197 |
137 |
827 |
503 |
1069 |
1187 |
1087 |
233 |
499 |
877 |
1051 |
1009 |
1223 |
461 |
541 |
1259 |
149 |
1163 |
743 |
719 |
359 |
479 |
647 |
1291 |
163 |
463 |
311 |
883 |
601 |
239 |
1289 |
269 |
307 |
967 |
491 |
829 |
211 |
857 |
1109 |
1297 |
1097 |
809 |
1061 |
1129 |
823 |
487 |
523 |
587 |
443 |
733 |
199 |
853 |
317 |
599 |
617 |
977 |
167 |
643 |
127 |
709 |
773 |
509 |
577 |
811 |
997 |
971 |
1361 |
421 |
1301 |
439 |
1249 |
419 |
109 |
1279 |
1123 |
569 |
383 |
907 |
653 |
251 |
337 |
641 |
659 |
727 |
557 |
691 |
1327 |
401 |
983 |
179 |
1151 |
331 |
761 |
1117 |
157 |
619 |
229 |
991 |
607 |
389 |
257 |
859 |
1171 |
1213 |
547 |
1033 |
1319 |
631 |
263 |
151 |
1229 |
191 |
181 |
571 |
863 |
1307 |
281 |
293 |
1277 |
379 |
821 |
367 |
887 |
1013 |
673 |
919 |
929 |
1303 |
947 |
347 |
397 |
1039 |
173 |
1031 |
467 |
313 |
769 |
353 |
593 |
953 |
1093 |
1021 |
797 |
787 |
881 |
101 |
103 |
1049 |
223 |
409 |
457 |
1193 |
661 |
839 |
1103 |
1201 |
751 |
271 |
107 |
677 |
1217 |
349 |
613 |
373 |
1367 |
131 |
Рис. 4
n = 15 массив чисел 131,137, …, 1613, 1619 магическая константа 12669.
Это набор из 15 строк, сгенерированный программой:
131 167 229 461 541 617 733 911 967 1091 1259 1279 1319 1471 1493
211 1291 1499 577 1087 349 947 467 739 613 1171 1609 173 839 1097
563 139 1373 1459 1289 443 619 1201 1427 809 881 1303 331 569 263
853 643 701 179 1483 571 769 859 1447 659 929 997 1223 1129 227
599 953 1213 587 499 727 1321 787 307 1151 157 1571 1033 991 773
547 907 1583 1613 149 1423 193 1601 941 137 233 1039 1283 631 389
607 1607 1511 673 1181 1481 1217 523 661 857 223 743 197 757 431
1019 181 751 163 1453 1301 1297 1277 271 1619 1327 691 277 281 761
421 311 1487 439 1049 1409 1123 463 409 983 449 1031 1163 1559 373
503 1367 433 1013 829 1153 317 347 1109 491 1249 677 241 1489 1451
719 919 359 1063 1307 653 1237 269 1433 863 1439 191 883 313 1021
1549 887 1061 557 257 367 337 1361 811 601 937 1231 1543 877 293
647 709 1193 1051 353 479 239 971 1531 1229 977 1093 1399 379 419
397 827 1069 509 1187 823 1579 283 1567 383 797 683 641 1523 401
151 199 251 457 487 521 593 821 1009 1103 1117 1381 1429 1553 1597
На рис. 5 изображён магический квадрат, полученный из данного набора строк.
131 |
167 |
229 |
461 |
541 |
617 |
733 |
911 |
967 |
1091 |
1259 |
1279 |
1319 |
1471 |
1493 |
547 |
907 |
1583 |
1613 |
149 |
1423 |
193 |
1601 |
941 |
137 |
233 |
389 |
1039 |
1283 |
631 |
1019 |
181 |
751 |
163 |
1453 |
1301 |
1297 |
1277 |
271 |
1619 |
1327 |
691 |
277 |
281 |
761 |
1307 |
719 |
359 |
919 |
1063 |
653 |
1237 |
269 |
1433 |
863 |
1439 |
313 |
191 |
1021 |
883 |
503 |
1367 |
433 |
1013 |
829 |
1153 |
317 |
347 |
1109 |
491 |
1249 |
677 |
1451 |
1489 |
241 |
421 |
311 |
1487 |
439 |
1049 |
1409 |
1123 |
463 |
409 |
983 |
449 |
1031 |
1163 |
373 |
1559 |
1399 |
1193 |
419 |
1531 |
971 |
647 |
977 |
1051 |
709 |
479 |
1229 |
379 |
353 |
1093 |
239 |
599 |
953 |
1213 |
587 |
499 |
727 |
1321 |
787 |
307 |
1151 |
157 |
1571 |
1033 |
773 |
991 |
211 |
1291 |
1499 |
577 |
1087 |
349 |
947 |
467 |
739 |
613 |
1171 |
1609 |
173 |
839 |
1097 |
563 |
139 |
1373 |
1459 |
1289 |
443 |
619 |
1201 |
1427 |
809 |
881 |
1303 |
331 |
263 |
569 |
607 |
1607 |
1511 |
673 |
1181 |
1481 |
1217 |
523 |
661 |
857 |
223 |
743 |
197 |
431 |
757 |
853 |
643 |
701 |
179 |
1483 |
571 |
769 |
859 |
1447 |
659 |
929 |
997 |
1223 |
1129 |
227 |
1549 |
887 |
257 |
557 |
367 |
1061 |
601 |
337 |
1361 |
937 |
1231 |
811 |
1543 |
293 |
877 |
1579 |
1187 |
397 |
1069 |
509 |
683 |
797 |
1567 |
401 |
383 |
641 |
283 |
823 |
827 |
1523 |
1381 |
1117 |
457 |
1429 |
199 |
151 |
521 |
1009 |
487 |
1597 |
251 |
593 |
1553 |
1103 |
821 |
Рис. 5
Обратите внимание: построенные мной квадраты начинаются с первого числа массива (то есть это число расположено в левой верхней ячейке квадрата). За редкими исключениями я всегда стараюсь составлять квадраты таким образом, чтобы они начинались с минимального числа. Это характерная особенность моих магических квадратов. Ещё одна особенность: числа в первой строке квадрата следуют в порядке возрастания. Квадраты, построенные по программам Стефана, не обладают такими свойствами. По этим признакам можно отличить мои квадраты от квадратов Стефана.
Мне осталось показать подобные квадраты порядков 7 – 11, 13, которые мной тоже построены до знакомства со Стефаном и независимо от него. Хотя приоритет в построении этих квадратов, конечно, принадлежит Стефану. Я не буду показывать для этих квадратов наборы строк, из которых они были получены, покажу только магические квадраты. Смотрите эти квадраты на рис. 6 – 11.
43 |
109 |
7 |
199 |
191 |
151 |
97 |
137 |
173 |
29 |
163 |
37 |
47 |
211 |
61 |
31 |
227 |
41 |
113 |
131 |
193 |
23 |
71 |
107 |
179 |
239 |
167 |
11 |
197 |
83 |
157 |
53 |
17 |
223 |
67 |
233 |
101 |
89 |
149 |
127 |
19 |
79 |
103 |
229 |
181 |
13 |
73 |
59 |
139 |
Рис. 6
Примечание: этот квадрат – пример исключения, когда в левой верхней ячейке расположено не минимальное число массива и числа в первой строке следуют не по порядку.
79 |
137 |
197 |
199 |
277 |
347 |
349 |
431 |
127 |
193 |
131 |
419 |
337 |
421 |
107 |
281 |
103 |
379 |
283 |
389 |
293 |
227 |
179 |
163 |
397 |
251 |
83 |
271 |
269 |
157 |
439 |
149 |
409 |
211 |
383 |
191 |
181 |
101 |
401 |
139 |
307 |
239 |
317 |
167 |
89 |
367 |
97 |
433 |
353 |
233 |
359 |
151 |
257 |
223 |
331 |
109 |
241 |
373 |
263 |
229 |
313 |
173 |
113 |
311 |
Рис. 7
37 |
127 |
163 |
179 |
229 |
233 |
379 |
421 |
443 |
41 |
431 |
463 |
457 |
59 |
139 |
433 |
109 |
79 |
409 |
311 |
389 |
71 |
307 |
347 |
281 |
53 |
43 |
373 |
137 |
181 |
251 |
401 |
239 |
317 |
89 |
223 |
173 |
419 |
101 |
103 |
113 |
353 |
313 |
277 |
359 |
97 |
383 |
397 |
479 |
47 |
197 |
107 |
263 |
241 |
349 |
131 |
193 |
149 |
367 |
199 |
73 |
467 |
283 |
439 |
61 |
257 |
191 |
227 |
167 |
151 |
449 |
269 |
293 |
211 |
67 |
331 |
461 |
337 |
157 |
83 |
271 |
Рис. 8
23 |
31 |
59 |
227 |
239 |
349 |
379 |
461 |
523 |
571 |
397 |
587 |
487 |
109 |
163 |
43 |
353 |
71 |
89 |
563 |
193 |
137 |
577 |
181 |
167 |
409 |
113 |
233 |
541 |
311 |
509 |
331 |
383 |
131 |
439 |
307 |
157 |
139 |
317 |
149 |
337 |
257 |
283 |
431 |
29 |
479 |
241 |
263 |
313 |
229 |
199 |
277 |
467 |
419 |
347 |
373 |
67 |
557 |
73 |
83 |
251 |
281 |
443 |
359 |
197 |
401 |
449 |
97 |
173 |
211 |
503 |
271 |
47 |
151 |
269 |
293 |
457 |
367 |
41 |
463 |
61 |
191 |
37 |
433 |
491 |
107 |
593 |
547 |
223 |
179 |
389 |
499 |
79 |
421 |
521 |
101 |
53 |
127 |
569 |
103 |
Рис. 9
67 |
137 |
229 |
239 |
293 |
449 |
487 |
601 |
613 |
641 |
751 |
761 |
101 |
383 |
83 |
149 |
733 |
787 |
401 |
73 |
467 |
569 |
727 |
593 |
563 |
673 |
491 |
331 |
139 |
439 |
127 |
317 |
107 |
769 |
523 |
557 |
521 |
257 |
103 |
263 |
251 |
653 |
167 |
443 |
683 |
571 |
503 |
547 |
719 |
97 |
223 |
373 |
79 |
233 |
479 |
179 |
431 |
211 |
163 |
599 |
313 |
773 |
499 |
397 |
509 |
433 |
109 |
337 |
743 |
271 |
283 |
619 |
419 |
647 |
577 |
389 |
113 |
71 |
461 |
131 |
757 |
457 |
197 |
421 |
379 |
607 |
659 |
367 |
193 |
631 |
643 |
349 |
709 |
617 |
359 |
241 |
409 |
157 |
199 |
797 |
541 |
353 |
677 |
281 |
701 |
173 |
89 |
311 |
277 |
307 |
151 |
181 |
191 |
227 |
269 |
347 |
463 |
587 |
661 |
691 |
739 |
Рис. 10
13 |
71 |
73 |
173 |
199 |
443 |
593 |
613 |
619 |
743 |
859 |
907 |
1019 |
919 |
769 |
829 |
491 |
41 |
83 |
751 |
211 |
599 |
433 |
719 |
97 |
383 |
109 |
419 |
997 |
571 |
463 |
311 |
439 |
797 |
683 |
499 |
811 |
47 |
179 |
991 |
673 |
431 |
367 |
269 |
461 |
223 |
727 |
193 |
191 |
967 |
479 |
353 |
521 |
643 |
53 |
547 |
251 |
733 |
503 |
821 |
809 |
337 |
331 |
397 |
379 |
229 |
19 |
677 |
233 |
347 |
467 |
1031 |
293 |
577 |
881 |
79 |
839 |
653 |
373 |
587 |
823 |
283 |
197 |
409 |
509 |
359 |
43 |
317 |
647 |
757 |
1021 |
1009 |
617 |
257 |
37 |
569 |
23 |
31 |
983 |
307 |
457 |
601 |
421 |
1013 |
139 |
787 |
641 |
263 |
487 |
563 |
101 |
401 |
971 |
773 |
151 |
911 |
137 |
853 |
937 |
61 |
863 |
977 |
313 |
827 |
131 |
349 |
163 |
181 |
389 |
281 |
241 |
89 |
449 |
883 |
709 |
941 |
557 |
29 |
659 |
1033 |
127 |
541 |
67 |
761 |
607 |
157 |
953 |
929 |
631 |
59 |
857 |
239 |
227 |
739 |
17 |
149 |
167 |
107 |
877 |
661 |
887 |
947 |
701 |
103 |
277 |
271 |
113 |
523 |
691 |
Рис. 11
Магические квадраты на рис. 7 – 11 начинаются с минимального числа массива и числа в первой строке этих квадратов следуют по порядку. Как я уже говорила, это просто отличительная особенность моих магических квадратов (у меня так составлена программа).
Интересным квадратом в этой серии квадратов является квадрат 35-го порядка, он составлен из массива последовательных простых чисел, начинающегося с первого нечётного простого числа – 3. Весь массив: 3, 5, 7, …, 9929, 9931, 9941. Магическая константа такого квадрата равна 163043.
Я построила такой магический квадрат по программе Стефана (Стефано тоже построил уже такой квадрат):
ORDER=35 MAGIC=163043
1901 2003 647 2729 8627 9631 5407 7759 9929 2801 2999 499 5309 673 4651 5227 941 8951 1613 9791 7853 3617 9241 8269 1801 1723 3877 3677 1759 7109 2939 3413 2383 4547 8747
5081 787 4363 2767 5147 2029 619 6793 7573 1153 8087 2011 271 3593 3511 853 9473 9787 2281 7559 7151 157 7949 3217 7577 6779 4231 4987 7411 9413 2221 1889 9887 5927 509
757 2393 3 1181 3067 6353 3109 163 8009 2137 3041 5483 2777 1667 4451 9463 1619 1493 7523 2113 8699 8933 4051 9539 6733 2069 6883 7537 7541 2753 8527 1429 5623 8233 7691
8387 8419 433 3691 6827 3329 5507 4591 7793 1459 9619 7283 691 6961 5849 3853 571 2647 7127 6521 4019 7699 257 313 2027 2503 7753 2953 2833 2659 4271 3793 3389 7159 9857
7823 7057 239 1747 2243 2663 2381 6569 8147 3121 5281 1013 4583 557 1451 8123 7649 2239 6661 9679 569 4049 8839 7187 6427 5657 907 7477 2741 9283 1229 9127 5669 937 3719
5323 193 59 6899 1021 3709 8243 3833 8609 4421 827 8731 4289 233 5521 7927 8329 3251 8117 3607 37 5651 6469 2687 4409 5189 7687 2731 8111 1187 9371 4513 2837 4091 4931
661 7177 197 9461 2053 8689 2423 8647 631 4691 2711 367 8803 7951 6263 6947 6803 4639 5101 487 9323 8999 5303 719 8863 887 2161 2851 5393 2617 2857 23 8783 5351 4211
2591 9173 9349 1709 3779 7621 8209 3637 1471 6047 503 6737 9281 3457 607 6689 4003 3181 877 1499 5153 331 7757 4129 1063 2081 4153 5059 8221 9587 5237 419 7489 9467 2477
5009 7253 6323 2417 7669 3407 9181 9341 3079 4057 3313 8719 5279 1367 139 8807 9137 9811 3361 9391 3089 109 4549 709 3929 173 3889 2671 6871 4597 547 5171 1249 8167 263
9649 8849 593 7907 9497 2789 8693 9883 7211 3209 947 1993 6359 8059 1783 1033 8263 149 8539 31 6131 5023 179 11 3463 4673 107 8431 863 181 1811 7393 9151 577 9613
797 4241 7993 743 4993 4073 3541 6551 6299 9239 6977 6211 9293 6451 1609 2129 9521 2131 4079 7561 1481 9551 701 5903 8537 5693 79 4517 3461 1663 9419 2269 587 2927 1823
1031 5851 6421 2309 8543 8623 6337 137 4493 991 4933 9623 3371 3467 8707 6397 7247 3347 9013 1307 6073 53 1597 2971 2213 7309 5 5861 4663 6701 5791 1543 467 9067 6581
1319 1129 839 1201 5743 7297 4253 1093 8089 6761 1213 6203 421 8573 5051 8753 5233 6247 3643 5107 3221 3769 4621 9629 5231 2341 1097 7517 7207 4861 3229 7529 4201 4903 5519
3547 2963 9817 8971 5197 1151 3253 7883 379 6917 349 6089 3631 9157 2087 1193 3191 2549 2083 9479 4643 6113 3923 4243 281 7591 8017 1039 1549 131 4483 9743 6197 7717 7487
7817 2579 3911 3449 6763 3083 9319 1069 761 6959 8287 3931 167 9431 3623 2719 8501 7607 2677 5857 8563 4889 4723 967 5683 739 1091 4463 5653 3797 4391 9767 2543 5387 1877
9257 5477 683 821 4793 4133 7229 6563 3499 401 6833 6997 8821 4217 5639 9007 3917 9851 3559 9719 7039 2351 8923 1733 3169 3257 1399 1637 2819 211 5659 61 6121 1049 6199
1453 6101 8597 2089 7433 8039 2693 7901 6301 7013 2099 9091 1627 5179 4721 4283 2039 3767 7643 89 5471 953 3821 337 1009 8081 4507 4603 8377 5939 4397 4999 1531 7321 3539
229 6007 4919 8363 6163 2347 29 4817 3491 2521 8101 409 19 8941 8191 5879 4799 6133 643 2621 5099 5573 277 4327 8837 353 4679 6277 8677 4157 5953 5039 8093 4481 6599
3023 7121 3581 2957 7933 373 389 6653 3137 9161 4111 6547 4973 3533 983 5783 9739 8317 3203 971 6967 5479 1571 6043 8291 1741 1567 9547 7841 4259 4519 2593 2207 3701 4229
9697 5087 3391 7129 613 3469 7 9721 1559 2357 2251 1061 5821 9439 881 1087 5647 8713 9437 5779 9043 7681 7723 4177 9433 1861 1931 6317 3881 457 6691 3163 5897 359 1283
6991 2267 8963 3659 1301 1553 4021 4787 3259 8069 6949 6659 8273 2683 7069 2699 977 521 7349 6229 199 9907 7019 4139 1949 9311 1433 9277 1601 9833 4457 191 809 7417 1223
1669 9221 8629 7451 2437 4561 5827 811 4649 8179 5119 4027 2143 1237 6673 659 3823 2273 8761 6911 103 3061 1217 8219 7459 3583 7879 8741 2551 5717 9049 1933 3671 463 4337
6857 5441 4733 17 479 5527 7103 1621 4373 6091 6473 727 3803 7369 8443 4093 7583 9733 7877 3037 227 1231 3727 9001 1409 9901 5807 6173 4969 3343 653 5381 3613 3319 2909
6079 7603 8293 8423 2411 1327 443 7079 251 9941 2237 307 8861 4273 2879 4007 4261 2111 2713 5641 3967 7213 829 9769 8297 9109 9397 641 3863 4957 1787 1951 7829 2297 1997
8599 1321 6791 1303 2803 4357 6781 1297 8887 7333 8429 4909 5437 3119 5689 6011 1447 1279 1259 1171 4567 6491 6719 3271 1427 8581 8053 2153 6143 7547 3739 3761 3529 7789 1051
6449 1973 127 5399 6823 4099 6367 4759 4831 293 6379 6637 6373 563 3557 5443 1523 3187 5419 3527 6311 6067 9103 8641 1579 9677 997 439 1699 6271 9643 8681 97 911 9199
6679 6907 617 5113 4871 9931 4219 2377 1117 8969 7963 5843 8369 9059 7219 3019 8867 2389 7481 5569 1019 2609 2969 1697 919 1289 3947 67 2339 5557 2791 4339 8461 2539 5923
2063 43 8737 5563 3943 2467 5011 3373 2657 2203 4441 6529 7507 6257 6869 2311 4783 6607 5347 2399 8819 4127 1423 9871 8513 5813 9689 1583 241 5749 3919 7457 1979 2903 1847
5531 5413 6037 8831 3517 4967 4159 5333 3299 3571 9749 3011 8311 283 5801 859 523 7351 4877 7867 4297 1439 1163 151 7727 9859 7237 1693 8467 599 5869 6389 2689 3733 2441
73 1483 5503 7027 8389 5209 1657 1721 4751 8669 3851 3049 449 3307 4447 6829 5021 7193 2797 3359 113 9187 7703 1879 1489 311 6343 7589 4423 7549 773 8447 4013 9511 8929
3331 9803 9491 2557 2861 491 1291 2179 5591 1871 9203 9661 5741 9403 4937 5273 5987 9343 1831 6269 431 317 6703 5737 823 5261 7673 83 461 3907 6983 4729 6571 269 5981
5417 4523 8231 3697 1753 7499 7937 6863 6481 101 3167 41 2843 1777 769 7873 347 1511 1487 4703 6151 6287 8161 6577 6217 2333 857 6361 4813 8893 9133 8779 5867 2293 3301
9029 6029 4657 8011 5297 1867 2459 71 1913 1907 1123 2017 1987 751 6221 929 13 2141 5431 4349 6841 1103 2917 4951 9377 8171 9209 9923 1999 2473 7639 8521 9227 5449 9041
3847 1109 6553 7919 2887 9337 6709 2531 4943 9829 677 5839 6619 7307 9421 3989 883 2371 1873 397 2633 6053 3673 6329 1381 3433 8663 5881 4001 8353 1277 1607 9011 3001 2707
5077 47 3323 9533 5167 7043 8237 4637 5581 601 4801 4789 541 2749 7331 2897 383 223 1361 2447 7741 6971 7243 5701 5501 5711 9839 2287 9601 733 1789 7001 1373 9781 5003
Стефано определил, что до порядка 500 есть ещё только три квадрата подобных приведённому квадрату 35-го порядка. Это квадраты порядков 215 (магическая константа 57689237), 225 (магическая константа 66684561) и 398 (магическая константа 408313130).
Магические квадраты этой серии смотрите на сайте Стефана:
http://digilander.libero.it/ice00/magic/prime/orderConstant.html
На момент написания данной статьи Стефано уже построил квадраты этой серии до порядка 50 включительно.
12 – 14 октября 2009 г.
г. Саратов
ЛИТЕРАТУРА
[1] Мартин Гарднер. Математические досуги. – М.: Мир, 1972
[2] Ю. В. Чебраков. Магические квадраты. Теория чисел, алгебра, комбинаторный анализ. – С. – Петербург, 1995
[3] Ю. В. Чебраков. Теория магических матриц. Выпуск ТММ-1. – С. -Петербург, 2008. (электронная версия книги: http://chebrakov.narod.ru/ )
[4] Н. В. Макарова. Волшебный мир магических квадратов. http://narod.ru/disk/5834353000/Magic_squares.pdf.html
[5] Н. В. Макарова. Простые числа. Математическая новелла. http://www.natalimak1.narod.ru/prost.htm или http://narod.ru/disk/10037356000/prost.pdf.html